Detailed Marking Instructions for each question

Question		Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •	
1.	.	Ans: No, supported by working - ${ }^{1}$ Process: calculate fraction of - ${ }^{2}$ Communication: state conclusion	2	$\begin{aligned} & \cdot{ }^{1} 3 / 8 \times 280= \\ & \cdot \bullet^{2} 105<110 \end{aligned}$	
Notes: - Correct method with incorrect answer \rightarrow 'correct' conclusion - Use of ' km ' in conclusion instead of 'miles' - Incorrect fraction used eg: $4 / 9 \times 280=124(.444 ..) \rightarrow$ 'enough fuel' - $3 / 9 \times 280=93(.333 ..) \rightarrow$ 'not enough fuel' - Correct conclusion with no working shown - $1 / 2 \times 280=140 \rightarrow$ enough fuel (working significantly eased)					award 1/2 award 2/2 award 1/2 award 1/2 award 1/2 award 0/2

2.		Ans: 0310/3•10am $\bullet{ }^{1}$ Strategy: knows how to deal with time zone, flight time and security clearance $\bullet 2$	Process/communication: state time	\bulletEvidence of adding all three times in the question on to 1845 $\bullet^{2} 0310$

Notes:

- If any two out of the three times are added correctly award $1 / 2$
- An answer of 'pick up from 0310 to 0315 '
award 2/2

Special case:

Candidate subtracts 4 hour time difference instead of adding \rightarrow pick Usain up at 1910
award 1/2

Notes:

- If new and old stock are mixed on the same shelf and all shelves hold $\leq 10 \mathrm{~m}$ award $1 / 2$
- Common incorrect answer:
award 1/2

Shelf 1	A J
Shelf 2	B I
Shelf 3	C D L
Shelf 4	E H
Shelf 5	G F K

Notes:

- $3 \times 330 \mathrm{ml}=1$ litre $\rightarrow £ 1 \cdot 98$ (working significantly eased)
- Correct answer with no working
award 0/2
award 2/2

Notes:

- For: $£ 700-(£ 550+£ 13 \cdot 75)=£ 136 \cdot 25$ award 3/4
- For: $£ 700-£ 550=£ 150$
award 2/4
Some common answers for Alternative Strategy:
- Candidate calculates 2.5% of $£ 150=£ 3.75 \rightarrow £ 150+£ 3.75=£ 153.75$ award $3 / 4$
- Candidate calculates the fee per share to be $£ 0 \cdot 06875$ then rounds to $£ 0 \cdot 07$ leading to a loss of $£ 164$ (premature rounding penalised)
award 3/4

Notes:

- If candidate finds $100^{2}+80^{2} \rightarrow$ an answer of 456 cm , so not enough ribbon, award 3/4
- Minimum working for $3^{\text {rd }}$ mark: Correct answer to $100+100+(2 \times$ their 'length' of half the base)
- For: $3 \times 100=300 \mathrm{~cm} \rightarrow$ enough ribbon as $300 \mathrm{~cm}<3.5 \mathrm{~m}$
award 1/4
- For a conclusion of, eg,' enough ribbon as $3 \cdot 5 \mathrm{~m}>3 \cdot 2 \mathrm{~m}$, so she has 3 m extra', disregard the subsequent incorrect calculation of extra length of ribbon

8.			Ans: Rule 1: Yes as 640 is upper limit of tolerance Ans: Rule 2: No as $17 / 30>1 / 2$ - ${ }^{1}$ Strategy: know to check both rules - ${ }^{2}$ Process: find $2 \times$ riser + tread - ${ }^{3}$ Communication: within tolerance, so passes rule 1 - ${ }^{4}$ Process: calculate gradient - ${ }^{5}$ Communication: shows that gradient > $1 / 2$, so fails rule 2	5	- ${ }^{1}$ evidence - ${ }^{2} 2 \times 170+300=640$ $\bullet^{3} 625 \pm 15$; range 610-640; 640 is within this range - ${ }^{4} 170 / 300$ or equivalent - ${ }^{5} 170 / 300>1 / 2$, so fails rule 2

Notes:

- For $3^{\text {rd }}$ mark, limits do not need to be stated explicitly
- For $3^{\text {rd }}$ mark, do not penalise error in calculation of lower limit
- $\mathrm{G}=\mathrm{V} / \mathrm{H}$ or equivalent is not sufficient to show that rule 2 has been considered

Special case: When candidate only considers one of the rules.

A: If candidate has correctly found the gradient and correctly used equivalent fractions to compare it with $1 / 2$.
In this case if the conclusion states:
'Fails rule 2 so both rules not met'
award 5/5
'Fails rule 2.' (no mention of both rules)
award 2/5
B: If candidate only considers $2 \times$ tread + height, but miscalculates so that the answer is outwith tolerance.
In this case if conclusion states:
'Fails rule 1, so both rules not met'
award 4/5
'Fails rule 1' (no mention of both rules)

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each \bullet
9.	(a)	Ans: $£ 360$ $\bullet 1$	1 Process: correct total	

Notes:

| (b) | Ans: $\mathbf{£ 1 6 5 \cdot 5 0}$
 \bullet • Strategy: knows how to
 calculate finance package | $\mathbf{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| \bullet^{2} Process: calculate deposit | | |
| \bullet^{3} Process: find total finance | | |
| package | | |
| $\bullet 4$ Communicate: state extra cost | | |

Notes:

- If candidate finds 10% of answer to (a), instead of 10% of $£ 455$ then a maximum of $3 / 4$ is available
Eg $12 \times £ 40+10 \%$ of $£ 360=£ 516$
$£ 516-£ 360=£ 156$

10.	(a)	Ans: $\mathbf{2 3 7} \cdot \mathbf{1 2 m}^{2}$ - ${ }^{1}$ Strategy: find radius of semicircle - ${ }^{2}$ Process: calculate area of semi-circle - ${ }^{3}$ Process: calculate remaining area - ${ }^{4}$ Process: calculate total area	4	$\bullet^{1} r=4$ $\cdot \bullet^{2} A=1 / 2 \times 3 \cdot 14 \times 4^{2}=25 \cdot 12$ $\bullet^{3} A=18 \times 12-2 \times 2=212$ $\cdot{ }^{4} A=212+25 \cdot 12=237 \cdot 12$

Notes:

${ }^{-1}$ may be implied by ${ }^{2}$
A common incorrect response:
If radius taken as $3 \mathrm{~m} \rightarrow \mathrm{~A}=1 / 2 \times 3 \cdot 14 \times 3^{2}=14 \cdot 13 \rightarrow 212+14 \cdot 13=226 \cdot 13 \mathrm{~m}^{2}$

| (b) | Ans: $£ 4077$
 $\bullet{ }^{1}$ Strategy: find minimum
 number of packs
 \bullet^{2} Process: calculate cost | $\mathbf{2}$ | |
| :--- | :--- | :--- | :--- | :--- |
| $\bullet^{1} 237 \cdot 12 \div 4=59 \cdot 28$ | | | |
| Therefore 60 packs required | | | |
| $\bullet^{2} 60 \times £ 67 \cdot 95=£ 4077$ | | | |

Notes:

- If answer to (a) is a multiple of 4, the $1^{\text {st }}$ mark is not available
- If answer to (a) is $226 \cdot 13 \mathrm{~m}^{2}$, correct follow through would be $57 \times £ 67 \cdot 95=£ 3873 \cdot 15$

